Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37447565

RESUMO

Phosphorous is an essential element for the life of organisms, and phosphorus-based compounds have many uses in industry, such as flame retardancy reagents, ingredients in fertilizers, pyrotechnics, etc. Ionic liquids are salts with melting points lower than the boiling point of water. The term "polymerized ionic liquids" (PILs) refers to a class of polyelectrolytes that contain an ionic liquid (IL) species in each monomer repeating unit and are connected by a polymeric backbone to form macromolecular structures. PILs provide a new class of polymeric materials by combining some of the distinctive qualities of ILs in the polymer chain. Ionic liquids have been identified as attractive prospects for a variety of applications due to the high stability (thermal, chemical, and electrochemical) and high mobility of their ions, but their practical applicability is constrained because they lack the benefits of both liquids and solids, suffering from both leakage issues and excessive viscosity. PILs are garnering for developing non-volatile and non-flammable solid electrolytes. In this paper, we provide a brief review of phosphonium-based PILs, including their synthesis route, properties, advantages and drawbacks, and the comparison between nitrogen-based and phosphonium-based PILs. As phosphonium PILs can be used as polymer electrolytes in lithium-ion battery (LIB) applications, the conductivity and the thermo-mechanical properties are the most important features for this polymer electrolyte system. The chemical structure of phosphonium-based PILs that was reported in previous literature has been reviewed and summarized in this article. Generally, the phosphonium PILs that have more flexible backbones exhibit better conductivity values compared to the PILs that consist of a rigid backbone. At the end of this section, future directions for research regarding PILs are discussed, including the use of recyclable phosphorus from waste.

2.
Phys Chem Chem Phys ; 25(8): 6436-6453, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779955

RESUMO

Ionic liquids are attractive liquid materials for many advanced applications. For targeted design, in-depth knowledge about their structure-property-relations is urgently needed. We prepared a set of novel protic ionic liquids (PILs) with a guanidinium cation with either an ether or alkyl side chain and different anions. While being a promising cation class, the available data is insufficient to guide design. We measured thermal and transport properties, nuclear magnetic resonance (NMR) spectra as well as liquid and crystalline structures supported by ab initio computations and were able to obtain a detailed insight into the influence of the anion and the ether substitution on the physical and spectroscopic properties. For the PILs, hydrogen bonding is the main interaction between cation and anion and the H-bond strength is inversely related to the proton affinity of the constituting acid and correlated to the increase of 1H and 15N chemical shifts. Using anions from acids with lower proton affinity leads to proton localization on the cation as evident from NMR spectra and self-diffusion coefficients. In contrast, proton exchange was evident in ionic liquids with triflate and trifluoroacetate anions. Using imide-type anions and ether side groups decreases glass transitions as well as fragility, and accelerated dynamics significantly. In case of the ether guanidinium ionic liquids, the conformation of the side chain adopts a curled structure as the result of dispersion interactions, while the alkyl chains prefer a linear arrangement.

3.
Molecules ; 27(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897904

RESUMO

In this study, we address the fundamental question of the physicochemical and electrochemical properties of phosphonium-based ionic liquids containing the counter-ions bis(trifluoromethanesulfonyl)imide ([TFSI]-) and bis(fluorosulfonyl)imide ([FSI]-). To clarify these structure-property as well as structure-activity relationships, trimethyl-based alkyl- and ether-containing phosphonium ILs were systematically synthesized, and their properties, namely density, flow characteristics, alkali metal compatibility, oxidative stability, aluminum corrosivity as well as their use in Li-ion cells were examined comprehensively. The variable moiety on the phosphonium cation exhibited a chain length of four and five, respectively. The properties were discussed as a function of the side chain, counter-ion and salt addition ([Li][TFSI] or [Li][FSI]). High stability coupled with good flow characteristics were found for the phosphonium IL [P1114][TFSI] and the mixture [P1114][TFSI] + [Li][TFSI], respectively.

4.
Chemistry ; 28(23): e202200257, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35187737

RESUMO

We report the complex phase behavior of the glass forming protic ionic liquid (PIL) d3-octylphosphonium bis(trifluoromethylsulfonyl)imide [C8 H17 PD3 ][NTf2 ] by means of solid-state NMR spectroscopy. Combined line shape and spin relaxation studies of the deuterons in the PD3 group of the octylphosphonium cation allow to map and correlate the phase behavior for a broad temperature range from 71 K to 343 K. In the solid PIL at 71 K, we observed a static state, characterized by the first deuteron quadrupole coupling constant reported for PD3 deuterons. A transition enthalpy of about 12 kJ mol-1 from the static to the mobile state with increasing temperature suggests the breaking of a weak, charge-enhanced hydrogen bond between cation and anion. The highly mobile phase above 100 K exhibits an almost disappearing activation barrier, strongly indicating quantum tunneling. Thus, we provide first evidence of tunneling driven mobility of the hydrogen bonded P-D moieties in the glassy state of PILs, already at surprisingly high temperatures up to 200 K. Above 250 K, the mobile phase turns from anisotropic to isotropic motion, and indicates strong internal rotation of the PD3 group. The analyzed line shapes and spin relaxation times allow us to link the structural and dynamical behavior at molecular level with the phase behavior beyond the DSC traces.

5.
Phys Chem Chem Phys ; 23(37): 21042-21064, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34522943

RESUMO

Ionic liquids are modern liquid materials with potential and actual implementation in many advanced technologies. They combine many favourable and modifiable properties but have a major inherent drawback compared to molecular liquids - slower dynamics. In previous studies we found that the dynamics of ionic liquids are significantly accelerated by the introduction of multiple ether side chains into the cations. However, the origin of the improved transport properties, whether as a result of the altered cation conformation or due to the absence of nanostructuring within the liquid as a result of the higher polarity of the ether chains, remained to be clarified. Therefore, we prepared two novel sets of methylammonium based ionic liquids; one set with three ether substituents and another set with three butyl side chains, in order to compare their dynamic properties and liquid structures. Using a range of anions, we show that the dynamics of the ether-substituted cations are systematically and distinctly accelerated. Liquefaction temperatures are lowered and fragilities increased, while at the same time cation-anion distances are slightly larger for the alkylated samples. Furthermore, pronounced liquid nanostructures were not observed. Molecular dynamics simulations demonstrate that the origin of the altered properties of the ether substituted ionic liquids is primarily due to a curled ether chain conformation, in contrast to the alkylated cations where the alkyl chains retain a linear conformation. Thus, the observed structure-property relations can be explained by changes in the geometric shape of the cations, rather than by the absence of a liquid nanostructure. Application of quantum chemical calculations to a simplified model system revealed that intramolecular hydrogen-bonding is responsible for approximately half of the stabilisation of the curled ether-cations, whereas the other half stems from non-specific long-range interactions. These findings give more detailed insights into the structure-property relations of ionic liquids and will guide the development of ionic liquids that do not suffer from slow dynamics.

6.
J Phys Chem B ; 125(17): 4476-4488, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33899479

RESUMO

The formation of aggregates of ionic species is a crucial process in liquids and solutions. Ion speciation is particularly interesting for the case of ionic liquids (ILs) since these Coulombic fluids consist solely of ions. Most of their unique properties, such as enthalpies of vaporization and conductivities, are strongly related to ion pair formation. Here, we show that the balance of hydrogen-bonded contact ion pairs (CIP) and solvent-separated (SIP) ion pairs in protic ionic liquids (PILs) and in their mixtures with water can be well understood by a combination of far-infrared (FIR) and mid-infrared (MIR) spectroscopy, density functional theory (DFT) calculations of PIL/water aggregates, and molecular dynamics (MD) simulations of PIL/water mixtures. This combined approach is applied to mixtures of triethylammonium methanesulfonate [Et3NH][MeSO3] with water. It is shown that ion speciation in this mixture depends on three parameters: the relative hydrogen bond acceptor strength of the counter ion and the molecular solvent, the solvent concentration, and the temperature. For selected PIL/water mixtures, the equilibrium constants for CIPs and SIPs were determined as a function of the solvent content and temperature. Finally, for the studied PIL/water mixtures, the transition from CIPs to SIPs could be understood on enthalpic and entropic grounds. A detailed picture of this interconversion process could be described at the molecular level by means of MD simulations. In addition, the concentration dependence of ion pair formation can be well understood with help of a simplified "cartoon-like" statistical model describing hydrogen bond redistribution.

7.
J Phys Chem B ; 125(10): 2719-2728, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33656344

RESUMO

A detailed understanding of the local dynamics in ionic liquids remains an important aspect in the design of new ionic liquids as advanced functional fluids. Here, we use small-angle X-ray scattering and quasi-elastic neutron spectroscopy to investigate the local structure and dynamics in a model ionic liquid as a function of temperature and pressure, with a particular focus on state points (P,T) where the macroscopic dynamics, i.e., conductivity, is the same. Our results suggest that the initial step of ion transport is a confined diffusion process, on the nanosecond timescale, where the motion is restricted by a cage of nearest neighbors. This process is invariant considering timescale, geometry, and the participation ratio, at state points of constant conductivity, i.e., state points of isoconductivity. The connection to the nearest-neighbor structure is underlined by the invariance of the peak in the structure factor corresponding to nearest-neighbor correlations. At shorter timescales, picoseconds, two localized relaxation processes of the cation can be observed, which are not directly linked to ion transport. However, these processes also show invariance at isoconductivity. This points to that the overall energy landscape in ionic liquids responds in the same way to density changes and is mainly governed by the nearest-neighbor interactions.

8.
Phys Chem Chem Phys ; 22(40): 23038-23056, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33047758

RESUMO

Ionic liquids are an attractive material class due to their wide liquid range, intrinsic ionic conductivity, and high chemical as well as electrochemical stability. However, the widespread use of ionic liquids is hindered by significantly higher viscosities compared to conventional molecular solvents. In this work, we show how the transport properties of ionic liquids can be altered significantly, even for isostructural ions that have the same backbone. To this end, structure-property relationships have been determined for a set of 16 systematically varied representative ionic liquids. Variations in molecular structure include ammonium vs. phosphonium, ether vs. alkyl side chains, and rigid vs. flexible anions. Ab initio calculations are used to relate molecular structures to the thermal, structural and transport properties of the ionic liquids. We find that the differences in properties of ether and alkyl functionalised ionic liquids are primarily dependent on minimum energy geometries, with the conformational flexibility of ether side chains appearing to be of secondary importance. We also show unprecedented correlations between anion conformational flexibility and transport properties. Critically, increasing fluidity upon consecutive introduction of ether side chains and phosphonium centres into the cation is found to be dependent on whether the anion is flexible or rigid. We demonstrate that targeted design of functional groups based on structure-property relationships can yield ionic liquids of exceptionally high fluidity.

9.
J Phys Chem A ; 123(19): 4188-4200, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30991004

RESUMO

As a result of continuing ionic liquid research, it becomes clearer that charge transfer in ionic liquids has a physical reality. In a recent publication, we demonstrated the utility of simple density functional theory descriptors to estimate charge transfer for a large number of ion combinations, which is possible because the ions are treated separately. A major disadvantage found was that the charge transfer was systematically overestimated. In this work, we introduce a correction to account for the losses in Coulomb attraction when charge is transferred from the anion to the cation. We find that accounting for these losses is important to describe charge transfer in ionic liquids appropriately. The advantage that the calculations can be performed separately on the individual, isolated ions is maintained. The corrected as well as the uncorrected charge transfer have been calculated for over 4000 cation-anion combinations at the R(O)B3LYP/6-311+G(2d,p)//RB3LYP/6-31+G(d,p) level of theory. With the correction, the absolute values for the charge transfer are no longer unrealistically high and agree well with other charge transfer estimates from the literature. In general, the cumulative nature of the Haven ratio is now correctly mirrored in the relationship between the corrected theoretical charge transfer and the experimental estimate from the Nernst-Einstein relation. Earlier findings on the similarities between ether-functionalized and nonfunctionalized ionic liquids are confirmed. However, we also observe inconsistencies when using the experimental charge transfer estimates together with the ionicity interpretation of the Haven ratio. These can be interpreted as a hint toward the latter premise being wrong.

10.
J Phys Chem A ; 123(4): 851-861, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30609365

RESUMO

One of the few properties common to all ionic liquids is their inherent electrical conductivity, which makes them promising candidates for advanced electrochemical applications. A central finding in this respect is that the measured conductivity is almost always lower than the one obtained from the Nernst-Einstein relation. There has been much dispute about whether correlated motion, charge transfer, or some sort of aggregation is the reason for this difference. In this work, we apply density functional theory-based descriptors to estimate the charge transfer in ionic liquids, which allow predictions for a large number of systems with minimal effort. The theoretical charge transfer was obtained from vertical ionization potentials and electron affinities at the RB3LYP/6-311+G(2d,p)//RB3LYP/6-31+G(d,p) level of theory. To be able to compare and classify the values obtained with this approach, another measure for charge transfer, available directly from the Nernst-Einstein relation, is introduced. The two quantities show significant correlation for some subsets of ionic liquids for which a sufficient amount of information is available. Additionally, the purely theoretical charge-transfer values allow for identifying interesting systems that should be the subject of further investigation.

11.
Biosens Bioelectron ; 126: 136-142, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30399515

RESUMO

Reduced graphene oxide (rGO) thin films can be exploited as highly sensitive transducer layers and integrated in interdigital micro-electrode systems for biosensing processes. The distinctive bipolar characterisitics of rGO thin films can be modulated by a very low external electric field due to the electrostatic charges of biomolecules. These charges lead to a fast response in the readout signals of rGO based ion sensitive field-effect transistors (ISFETs). The characterisitc changes of rGO ISFETs enable a fast, accurate and reproducible detection of biomolecules. The biosensing mechanism offers a fast and label-free approach for analyte detection in contrast to the classical ELISA method. In this contribution, we introduce a reproducible fabrication process of rGO based field-effect transistors on wafer level. The sensors are functionalized as biosensors to measure N-terminal pro-brain natriuretic peptide (NT-proBNP) in human serum within its clinical range. Our optimized rGO sensor shows very promising electrical properties and can be considered as a proof of concept study for the detection of various analytes. The easy and cost-effective fabrication as well as the versatile usability make this new technological platform an auspicious tool for different sensing applications in future.


Assuntos
Técnicas Biossensoriais/instrumentação , Grafite/química , Peptídeo Natriurético Encefálico/sangue , Fragmentos de Peptídeos/sangue , Biomarcadores/sangue , Eletrodos , Desenho de Equipamento , Humanos , Limite de Detecção , Oxirredução
12.
Chemphyschem ; 20(3): 443-455, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30480374

RESUMO

Ionic liquids (ILs) are promising electrolytes, although their often high viscosity remains a serious drawback. The latter can be addressed by the introduction of multiple ether functionalization. Based on the highly atom efficient synthesis of tris(2-ethoxyethyl) phosphine, several new phosphonium ionic liquids were prepared, which allows studying the influence of the ether side chains. Their most important physicochemical properties have been determined and will be interpreted using established approaches like ionicity, hole theory, and the Walden plot. There is striking evidence that the properties of phosphonium ionic liquids with the methanesulfonate anion are dominated by aggregation, whereas the two triple ether functionalized ILs with the highest fluidity show almost ideal behavior with other factors being dominant. It is furthermore found that the deviation from ideality is not significantly changed upon introduction of the ether side chains, although a very beneficial impact on the fluidity of ILs is observed. Multiple ether functionalization therefore proves as a powerful tool to overcome the disadvantages of phosphonium ionic liquids with large cations.

13.
Langmuir ; 34(35): 10217-10229, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30085682

RESUMO

Siloxane coatings for surfaces are essential in many scientific and industrial applications. We describe a straightforward gas-phase evaporation technique in inert atmosphere and introduce a practical and reliable silanization protocol adaptable to different silane types. The primary aim of depositing ultrathin siloxane films on surfaces is to enable a reproducible and homogenous surface functionalization without agglomeration effects during the layer formation. To realize high-quality and large-area coatings, it is fundamental to understand the reaction conditions of the silanes, the process of the siloxane layer formation, and the possible influence of the substrate morphology. We used three typical silane types to exemplify the potential and versatility of our process: aminopropyltriethoxysilane, glycidoxypropyltrimethoxysilane, and 1 H,1 H,2 H,2 H-perfluorooctyl-trichlorosilane. The ultrathin siloxane layers, which are generally difficult to characterize, were precisely investigated with high-resolution surface-characterization methods to verify our concept in terms of reproducibility and coating quality. Our results show that this gas-phase evaporation protocol is easily adaptable to all three, widely used silane types also enabling a large-area upscale.

14.
RSC Adv ; 8(72): 41639-41650, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-35559272

RESUMO

Ionic liquids (ILs) are a promising class of solvents, functional fluids and electrolytes that are of high interest for both basic as well as applied research. For further fundamental understanding of ILs and a successful implementation in technical processes, a deeper insight into transport properties and their interrelations is of particular importance. In this contribution we synthesised a series of mostly novel protic and aprotic ILs based on the tetramethylguanidinium (TMG) cation that is a derivative of the superbase guanidine. Different substitution patterns and anions from acids with broadly varied pK a values were investigated. We measured general properties, such as thermal transitions and densities of these ILs, as well as their transport quantities by means of rheology, impedance spectroscopy and NMR diffusometry. Different models for the correlation of the transport properties, namely the Nernst-Einstein, Walden and Stokes-Einstein-Sutherland relations were applied. The deviation from ideal behaviour of fully dissociated electrolytes, often termed as ionicity, was quantified by the reciprocal Haven ratio, fractional Walden rule and ionicity obtained from the Walden plot. Velocity cross-correlation coefficients were calculated to gain further insight into the correlation between ion movements. Both protic and aprotic TMG ILs show transport properties comparable to other ILs with similar molecular weight and high ionicity values especially in contrast to other protic ILs. Lowest ionicity values were found for the protic ILs with smallest ΔpK a values between constituting acid and base. This can either be explained by stronger hydrogen bonding between cation and anion or lower anti-correlations between the oppositely charged ions. These results aim to provide insight into the properties of this interesting cations class and a deeper understanding of the transport properties of ILs and their interrelations in general.

15.
Phys Chem Chem Phys ; 19(40): 27251-27258, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28991304

RESUMO

Ionic liquids (ILs) exhibit tunable behaviour and properties that are due to their supramolecular structure. We synthesized a series of alkylated and fluorinated phosphonium dicyanamide ILs to study the relation between molecular structure and assembly with a focus on the roles of cation chain length and fluorination. Small angle X-ray scattering indicated a lamellar structure with long-range order for all fluorinated ILs, while alkylated ILs showed only the general structures of ILs, i.e., alternating a polar ionic-zone and a nonpolar alkyl-zone. "Fluorophobic" interactions caused microphase segregation between perfluorinated and other molecular segments, "fluorophilic" interactions among the perfluorinated segments stabilized the microphase structure, and the coupling of "fluorophobic" and "fluorophilic" interactions resulted in a stable mesophase structure. The perfluorinated segments packed more densely than the alkylated analogues; the fluorinated versions (except for F2) liquefied at temperatures considerably above that of alkylated ILs. The lamellar structures strongly affected the rheology of the ILs. Fluorinated ILs had higher viscosities and exhibited non-Newtonian shear thinning; the alkylated ILs of the same length had an order of magnitude lower viscosities and were purely Newtonian. We propose that the disruption of lamellar structure in the shear flow causes the non-Newtonian flow behaviour.

16.
Sci Rep ; 7(1): 5041, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28698638

RESUMO

Lignin's aromatic building blocks provide a chemical resource that is, in theory, ideal for substitution of aromatic petrochemicals. Moreover, degradation and valorization of lignin has the potential to generate many high-value chemicals for technical applications. In this study, electrochemical degradation of alkali and Organosolv lignin was performed using the ionic liquids 1-ethyl-3-methylimidazolium trifluoromethanesulfonate and triethylammonium methanesulfonate. The extensive degradation of the investigated lignins with simultaneous almost full recovery of the electrolyte materials provided a sustainable alternative to more common lignin degradation processes. We demonstrate here that both the presence (and the absence) of water during electrolysis and proton transport reactions had significant impact on the degradation efficiency. Hydrogen peroxide radical formation promoted certain electrochemical mechanisms in electrolyte systems "contaminated" with water and increased yields of low molecular weight products significantly. The proposed mechanisms were tentatively confirmed by determining product distributions using a combination of liquid chromatography-mass spectrometry and gas-chromatography-mass spectrometry, allowing measurement of both polar versus non-polar as well as volatile versus non-volatile components in the mixtures.

17.
J Phys Chem B ; 121(1): 240-249, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-27995787

RESUMO

Changing the number of carbon atoms in the substituents of ionic liquids (ILs) is a way to shift the balance between Coulomb and van der Waals forces and, thus, to tune physicochemical properties. Here we address this topic on the microscopic level by employing quasielastic neutron scattering (QENS) and provide information about the stochastic ionic motions in the N-alkylpyridinium based ILs in a relatively expanded time range, from short time (subpicosecond) particle rattling to long time diffusive regime (hundreds of picoseconds). We have systematically investigated the effect of the alkyl chain length on the picosecond dynamics by employing partial deuteration of the samples and varying the number of carbon atoms in the alkyl substituent. The localized dynamics of the side groups have appeared to be enhanced for bulkier cations, which is opposite to the trend observed for the translational motion. This result highlights the role of the conformational flexibility of the alkyl group on the dynamical properties of ILs.

18.
Colloids Surf B Biointerfaces ; 150: 15-22, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27865903

RESUMO

A novel bi-functional thermo-responsive system, consisting of core/shell bi-magnetic nanoparticles with furan surface functionality, is bonded with N-(2-Carboxyethyl)maleimide through Diels-Alder reaction. The chemotherapeutics doxorubicin is attached onto the surface, with a high loading efficiency of 92%. This system with high responsiveness to a high frequency external alternating magnetic field shows a very good therapeutic efficiency in hyperthermia and drug release at relatively low temperatures (50°C). Polyhedron-shaped bi-magnetic nanoparticles (Zn0.4Co0.6Fe2O4@Zn0.4Mn0.6Fe2O4) exhibit a significant increase of the specific energy absorption rate up to 455W/g compared with the core nanoparticles (200W/g). Real-time florescence spectroscopy studies demonstrate rapid release of doxorubicin up to 50% in 5min and up to 92% after 15min upon exposure to high frequency external alternating magnetic field. The stability is evaluated for 8 weeks in phosphate buffer saline with a doxorubicin payload of 85%. In vitro studies using standard MTT cell assays with HeLa and Hep G2 lines prove an excellent biocompatibility with about 90% of cell viability after 24h of treatment within the highest concentration of functionalized magnetic nanoparticles (200µg/mL). The results indicate a controlled drug release mediated by thermo-responsive switching under applied alternating magnetic field.


Assuntos
Preparações de Ação Retardada/síntese química , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Materiais Biocompatíveis/química , Reação de Cicloadição , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Células HeLa , Células Hep G2 , Temperatura Alta , Humanos , Campos Magnéticos , Nanopartículas/química , Fosfatos/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Anal Bioanal Chem ; 408(28): 8203-8210, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27640206

RESUMO

Lignin is the second most abundant natural polymer and a promising alternative energy source for conventional fossil fuels. In this study, we investigated transformations of lignin compounds under artificial UV light conditions at the molecular level. Such light-induced changes of composition profiles in nature after sun exposure have been studied for crude oil in the petroleomics field. We applied a similar high resolution mass spectrometry experimental strategy to lignin and demonstrated various data processing methods to reveal the characteristic differences between the extremely complex data sets of two sample sets, one native control before and one sample after photo-irradiation, using Fourier transform ion cyclotron resonance-mass spectrometry. Graphical abstract Kendrick mass defect versus nominal Kendrick mass for mass spectra of a control and UV-oxidized lignin sample.

20.
Anal Bioanal Chem ; 408(18): 4835-43, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27178557

RESUMO

Lignin is the second most abundant natural biopolymer, and lignin wastes are therefore potentially significant sources for renewable chemicals such as fuel compounds, as alternatives to fossil fuels. Waste valorisation of lignin is currently limited to a few applications such as in the pulp industry, however, because of the lack of effective extraction and characterisation methods for the chemically highly complex mixtures after decomposition. Here, we have implemented high resolution mass spectrometry and developed two-dimensional mass defect matrix plots as a data visualisation tool, similar to the Kendrick mass defect plots implemented in fields such as petroleomics. These 2D matrix plots greatly simplified the highly convoluted lignin mass spectral data acquired from Fourier transform ion cyclotron resonance (FTICR)-mass spectrometry, and the derived metrics provided confident peak assignments and strongly improved structural mapping of lignin decomposition product series from the various linkages within the lignin polymer after electrochemical decomposition. Graphical Abstract 2D mass defect matrix plot for a lignin sample after decomposition.


Assuntos
Eletroquímica/métodos , Lignina/análise , Lignina/química , Espectrometria de Massas/métodos , Teste de Materiais/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Misturas Complexas/análise , Misturas Complexas/química , Polímeros/análise , Polímeros/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...